Powered By Blogger

Senin, 21 April 2014

Grafik 3D

HELIX
»t=0:pi/50:10*pi;
» plot3(sin(t),cos(t),t,'-o')
» title('Helix'),xlabel('sin(t)'),ylabel('cos(t)'),zlabel('t')
» text(0,0,0,'titik asal')






>> x=linspace(0,3*pi);
>> z1=sin(x);
>> z2=sin(2*x);
>> z3=sin(3*x);
>> y1=zeros(size(x));
>> y2=ones(size(x));
>> y3=y2/2;
>> plot3(x,y1,z1,x,y2,z2,x,y3,z3)






>> subplot(2,2,1);
>> plot3(x,y1,z1,x,y2,z2,x,y3,z3)
>> title('default, Az=-37.5 El=30')
>> view(-37.5,30)
>> subplot(2,2,2);
>> plot3(x,y1,z1,x,y2,z2,x,y3,z3)
>> title('dirotasi ke 52.5')
>> view(-37.5+90,30)
>> subplot(2,2,3);
>> plot3(x,y1,z1,x,y2,z2,x,y3,z3)
>> title('elevasi menjadi 60')
>> view(-37.5,60)
>> subplot(2,2,4)
>> plot3(x,y1,z1,x,y2,z2,x,y3,z3)
>> title('Az=0 El=90')
>> view(0,90)
>> grid



>> x=[-7.5:0.5:7.5]
>> y=x;
>> [X,Y]=meshgrid(x,y)
>> R=sqrt(X.^2+Y.^2)+eps;
>> Z=sin(R)./R;
>> mesh(X,Y,Z)



>> x=[-7.5:0.5:7.5]
>> y=x;
>> [X,Y]=meshgrid(x,y)
>> R=sqrt(X.^2+Y.^2)+eps;
>> Z=sin(R)./R;
>> meshz(X,Y,Z)


>> x=[-7.5:0.5:7.5]
>> y=x;
>> [X,Y]=meshgrid(x,y)
>> R=sqrt(X.^2+Y.^2)+eps;
>> Z=sin(R)./R;
>> meshc(X,Y,Z)



>> x=[-7.5:0.5:7.5]
>> y=x;
>> [X,Y]=meshgrid(x,y)
>> R=sqrt(X.^2+Y.^2)+eps;
>> Z=sin(R)./R;
>> waterfall(X,Y,Z)





>> x=[-7.5:0.5:7.5]
>> y=x;
>> [X,Y]=meshgrid(x,y)
>> R=sqrt(X.^2+Y.^2)+eps;
>> Z=sin(R)./R;
>> surf(X,Y,Z)




>> x=[-7.5:0.5:7.5]
>> y=x;
>> [X,Y]=meshgrid(x,y)
>> R=sqrt(X.^2+Y.^2)+eps;
>> Z=sin(R)./R;
>> surfc(X,Y,Z)





>> x=[-7.5:0.5:7.5]
>> y=x;
>> [X,Y]=meshgrid(x,y)
>> R=sqrt(X.^2+Y.^2)+eps;
>> Z=sin(R)./R;
>> surfl(X,Y,Z)










0 komentar:

Posting Komentar